\qquad
\qquad

Adding \& Subtracting Rational Numbers

1) $-\frac{9}{13}+\frac{7}{13}=$
2) $\frac{8}{9}+\left(-\frac{1}{9}\right)=$
3) $-7 \frac{1}{2}+-\frac{1}{2}=$
4) $4 \frac{3}{4}+-10 \frac{1}{3}=$
5) $-\frac{7}{8}+\frac{6}{12}=$
6) $(-7.8)+5.4=$
7) $(-5.2)+(-3.2)=$
8) $10.6+(-8.2)=$
9) $12.1+(-14.6)=$
10) $(-0.8)+(-0.5)=$
11) $-7 \frac{10}{15}+\left(-10 \frac{4}{5}\right)=$
12) $14.8+12.3=$
13) At the beginning of the day the stock market goes up $70 \frac{3}{4}$ points and stays at this level for most of the day. At the end of the day the stock market goes down $110 \frac{1}{2}$ points from the high at the beginning of the day. What is the total change in the stock market from the beginning of the day to the end of the day?
14) A group of students go out on a boat to go scuba diving. The instructor takes the group 54.32 feet below the surface to start. Then they go up 28.98 feet and stop to see some fish. Find the total change in distance from where they started at the surface.
15) Some friends are going on a rollercoaster ride at an amusement part. They board their car on a platform that is $12 \frac{1}{2}$ feet above the ground. The car starts by going down $100 \frac{1}{2}$ feet. Then the car goes up $50 \frac{1}{4}$ feet and comes to a stop. What is the change in height from where the friends started on the platform to where they are when the car stops? The change in height is \qquad ft.
16) $3.6-9.6=$
17) $\frac{2}{7}-\left(-\frac{7}{9}\right)=$
18) $\frac{2}{7}-\frac{7}{9}=$
19) $2 \frac{1}{4}-3 \frac{7}{8}=$
20) $\frac{1}{3}-\left(-\frac{5}{6}\right)=$
21) $-11.0-(-2.8)=$
22) $8.1-(-8.1)=$
23) $-\frac{1}{4}-\frac{5}{6}=$
24) $-\frac{1}{2}-\left(-\frac{17}{24}\right)=$
25) $-28.5-(-28.5)=$
26) $2 \frac{11}{13}-\frac{3}{19}-2 \frac{11}{13}=$
27) $3.6-(-3.6)-7.2=$
28) A bird flies from the bottom of a canyon that is $76 \frac{3}{5}$ feet below sea level to a nest that is $787 \frac{1}{5}$ feet above sea level. What is the difference in elevation between the bottom of the canyon and the birds nest? \qquad ft.
