ALGEBRA SLOPE

NAME

DATE

SLOPE= Rise = Change in y-axis = $\frac{y_2 - y_1}{Run}$ Change in x-axis $\frac{y_2 - y_1}{x_2 - x_1}$

Using co-ordinate point #1 (x_1, y_1) and co-ordinate point #2 (x_2, y_2) substitute the values into the equation.

 $slope = \underbrace{\frac{v_e - v_1}{x_2 - x_4}}$

EXAMPLE:

co-ordinate point #1 (2, 7)

Therefore $x_1 = 2$: $y_1 = 7$ and $x_2 = -5$: $y_2 = 3$

co-ordinate point #2 (-5, 3)

Substitute into equation

 $\frac{3-7}{-5-2} = \frac{-4}{-7} = \frac{4}{7}$

Find the SLOPE of the line that contains each pair of points. CIRCLE YOUR ANSWER

- 1. (5, 3), (-1, 1)
- 2. (5, 6), (2, -2)
- 3. (5, -1), (-3, -4)

- 4. (-2, 3), (-4, -1)
- 5. (7, 3), (3, -9)
- 6. (1, 6), (-2, 5)

- 7. (-1, 0), (5, -1)
- 8. (6, 7), (-4, 3)
- 9. (-3, 4), (-2, -2)

- 10. (4, 3), (-5, 4)
- 11. (2, -3), (-1, 0)
- 12. (-2, -3), (5, 10)